Direct Measurement Based H∞ Controller Synthesis for an Autonomous Surface Vehicle
نویسنده
چکیده
An autonomous surface vehicle, based on a Prindle-19 catamaran and substituting a self-trimming vertical wing for the sail, was developed to demonstrate precision guidance and control. This vehicle, the Atlantis, was demonstrated to track straight line segments to better than 0.3 meters (1 − σ) when already trimmed for sail along the segment, using LQG control based on an identified plant using the Observer Kalman Identification (OKID) methods. In this work, a way-point guidance system is tested experimentally in addition to a novel H∞ subspace direct controller that is designed based on measured time series data for both the inputs and the actuator outputs. In previous simulations the Model Free Subspace H∞ controller has demonstrated similar performance levels to LQG methods while using the same identification data, but without requiring a model structure. Results from experimental trials have proven less successful, motivating an analysis of the controller’s implementation and possible problems.
منابع مشابه
Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملModeling and Intelligent Control System Design for Overtaking Maneuver in Autonomous Vehicles
The purpose of this study is to design an intelligent control system to guide the overtaking maneuver with a higher performance than the existing systems. Unlike the existing models which consider constant values for some of the effective variables of this behavior, in this paper, a neural network model is designed based on the real overtaking data using instantaneous values for variables. A fu...
متن کاملRobust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کاملAutonomous Parallel Parking of a Car Based on Parking Space Detection and Fuzzy Controller
This paper develops an automatic parking algorithm based on a fuzzy logic controller with the vehicle pose for the input and the steering angle for the output. In this way some feasible reference trajectory path have been introduced according to geometric and kinematic constraints and nonholonomic constraints to simulate motion path of car. Also a novel method is used for parking space detec...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کامل